If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-36x=0
a = 49; b = -36; c = 0;
Δ = b2-4ac
Δ = -362-4·49·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-36}{2*49}=\frac{0}{98} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+36}{2*49}=\frac{72}{98} =36/49 $
| 7(3+4y)=21+28 | | 88–26=y | | 6x+2=-4+16 | | 4x+2=4x-6 | | (x-3)^2+28=0 | | 86+11=z | | f+3π=7π | | 3(u+8)=-7u-16 | | -4+x=50 | | n-41,486=-1274 | | k+24=90 | | -9u+19=-4(u+4) | | 35x-(-5)=x+9 | | x÷4=-20 | | f+3=4 | | -4(u+1)6u=2(u+2)-8 | | -4(u+4)=-9u-41 | | x+7+4=9 | | 2/7p-10=10 | | 48+2x+8=20+4 | | 2x+3/5+7=12 | | 1/2x-3=5+1/3x | | 100+10x=1000-70 | | 7(2r+2)=-98 | | r-0.3=0.7 | | 5x+7/3x-1=6 | | (x-1)(x-2)(x+3)(x+6)=72x^2 | | (2/7p)-10=10 | | 3x+127+4x+4=180 | | 4u+4(u+8)=-24 | | -3(8y+4)-7y=3(y-1)-1 | | 3(x-1)(x+3)=0 |